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A numerical experiment

{xi}i∈I ⊂ [0,1]2, with #I = N = 16641
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A numerical experiment

{xi}i∈I ⊂ [0,1]2, with #I = N = 16641
Define K (r) as Matérn kernel with smoothness parameter ν = 1
and lengthscale l = 0.4.
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A numerical experiment

{xi}i∈I ⊂ [0,1]2, with #I = N = 16641
Define K (r) as Matérn kernel with smoothness parameter ν = 1
and lengthscale l = 0.4.
Γi,j := K

(
‖xi − xj‖

)
.
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A numerical experiment

Γ, interpreted as covariance matrix, describes a Gaussian field
with second order smoothness.
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A numerical experiment

Γ, interpreted as covariance matrix, describes a Gaussian field
with second order smoothness.
Alternatively, K can be seen as the Green’s function of a fourth
order elliptic PDE, on the whole space.
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A numerical experiment

Γ, interpreted as covariance matrix, describes a Gaussian field
with fourth order smoothness.
Alternatively, K can be seen as the Green’s function of a fourth
order elliptic PDE, on the whole space.
Matrices of this kind appear in both statistics and scientific
computing.
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A numerical experiment

Γ, interpreted as covariance matrix, describes a Gaussian field
with fourth order smoothness.
Alternatively, K can be seen as the Green’s function of a fourth
order elliptic PDE, on the whole space.
Matrices of this kind appear in both statistics and scientific
computing.
We need to apply the Matrix and its inverse, and compute its
determinant.
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A numerical experiment

Γ, interpreted as covariance matrix, describes a Gaussian field
with fourth order smoothness.
Alternatively, K can be seen as the Green’s function of a fourth
order elliptic PDE, on the whole space.
Matrices of this kind appear in both statistics and scientific
computing.
We need to apply the Matrix and its inverse, and compute its
determinant.
Γ is dense, and hence has N2 storage cost. Direct inversion via
Gaussian elimination has O

(
N3) complexity in time.
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A numerical experiment

Can we be more efficient?
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A numerical experiment

Can we be more efficient?
Many existing methods: Quadrature formulas, subsampling,
randomised approximations, low rank approximations, fast
multipole methods, hierarchical matrices, wavelet methods,
inducing points, covariance tapering . . . .

F. Schäfer, T.J. Sullivan, H. Owhadi Sparse factorisation of dense Kernel matrices June 8th 2017 13 / 130



A numerical experiment

Can we be more efficient?
Many existing methods: Quadrature formulas, subsampling,
randomised approximations, low rank approximations, fast
multipole methods, hierarchical matrices, wavelet methods,
inducing points, covariance tapering . . . .
We provide a simple algorithm, with rigorous error bounds and
near-linear complexity.
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A numerical experiment

Even writing down the matrix has N2 complexity.
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A numerical experiment

Even writing down the matrix has N2 complexity.
Therefore, we subsample Γ:

Γ̃i,j :=

{
Γi,j , for (i , j) ∈ S2

0, else
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A numerical experiment

Even writing down the matrix has N2 complexity.
Therefore, we subsample Γ:

Γ̃i,j :=

{
Γi,j , for (i , j) ∈ S2

0, else

#S2 = 5528749 = 0.0189N2. We have thrown away all but 2
percent of the entries, without even touching them!
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A numerical experiment

Even writing down the matrix has N2 complexity.
Therefore, we subsample Γ:

Γ̃i,j :=

{
Γi,j , for (i , j) ∈ S2

0, else

#S2 = 5528749 = 0.0189N2. We have thrown away all but 2
percent of the entries, without even touching them!
We will see later: S2 does not depend on the entries of Γ.
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A numerical experiment

We have compressed Γ to 2 percent of its original size.
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A numerical experiment

We have compressed Γ to 2 percent of its original size.
How much information have we retained?
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A numerical experiment

We have compressed Γ to 2 percent of its original size.
How much information have we retained?
Consider relative error in operator norm:
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A numerical experiment

We have compressed Γ to 2 percent of its original size.
How much information have we retained?
Consider relative error in operator norm:∥∥∥Γ− Γ̃

∥∥∥
‖Γ‖

= 0.9662
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A numerical experiment

We have compressed Γ to 2 percent of its original size.
How much information have we retained?
Consider relative error in operator norm:∥∥∥Γ− Γ̃

∥∥∥
‖Γ‖

= 0.9662

Γ̃ is a very bad approximation of Γ.
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A numerical experiment

Can we obtain a better approximation of Γ, using only Γ̃?
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A numerical experiment

Can we obtain a better approximation of Γ, using only Γ̃?

Consider L = ICHOL
(

Γ̃
)

, the incomplete Cholesky factorisation

of Γ̃, ignoring all fill-in.
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A numerical experiment

Can we obtain a better approximation of Γ, using only Γ̃?

Consider L = ICHOL
(

Γ̃
)

, the incomplete Cholesky factorisation

of Γ̃, ignoring all fill-in.∥∥Γ− LLT
∥∥

‖Γ‖
= 3.0676e−04
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A numerical experiment

Can we obtain a better approximation of Γ, using only Γ̃?
Consider L = ICHOL

(
Γ̃
)

, the incomplete Cholesky factorisation

of Γ̃, ignoring all fill-in.∥∥Γ− LLT
∥∥

‖Γ‖
= 3.0676e−04
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A numerical experiment

Decompose {xi}i∈I into a nested hierarchy as:

{xi}i∈I(1) ⊂ {xi}i∈I(2) ⊂ {xi}i∈I(3) ⊂ · · · ⊂ {xi}i∈I(q) = {xi}i∈I (1.1)
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A numerical experiment

We define J(k) := I(k) \ I(k−1) and define the sparsity pattern:

S2 :=
{

(i , j) ∈ I × I
∣∣∣i ∈ J(k), j ∈ J(l),dist

(
xi , xj

)
≤ 2 ∗ 2−min(k ,l)

}
.
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A numerical experiment

We define J(k) := I(k) \ I(k−1) and define the sparsity pattern:

S2 :=
{

(i , j) ∈ I × I
∣∣∣i ∈ J(k), j ∈ J(l),dist

(
xi , xj

)
≤ 2 ∗ 2min(k ,l)

}
.

We order the elements of I from coarse to fine, that is from J(1) to
J(q).
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A numerical experiment

L provides a good approximation of Γ at only 2 percent of the
storage cost.
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A numerical experiment

L provides a good approximation of Γ at only 2 percent of the
storage cost.
Can be computed in near linear complexity in time and space.
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A numerical experiment

L provides a good approximation of Γ at only 2 percent of the
storage cost.
Can be computed in near linear complexity in time and space.
Allows for approximate evaluation of Γ, Γ−1, and det (Γ) in
near-linear time.
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A numerical experiment

L provides a good approximation of Γ at only 2 percent of the
storage cost.
Can be computed in near linear complexity in time and space.
Allows for approximate evaluation of Γ, Γ−1, and det (Γ) in
near-linear time.
Allows for sampling of X ∼ N (0, Γ) in near-linear time.
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A numerical experiment

In this work, we
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A numerical experiment

In this work, we
prove that this phaenomenon holds whenever the covariance
function K is the Green’s function of an elliptic boundary value
problem.
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A numerical experiment

In this work, we
prove that this phaenomenon holds whenever the covariance
function K is the Green’s function of an elliptic boundary value
problem.
prove that it leads to an algorithm with computational complexity

of O
(

N log2 (N)
(

log (1/ε) + log2 (N)
)4d+1

)
in time and

O
(
N log(N) logd (N 1

ε )
)

in space for an approximation error of ε.
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A numerical experiment

In this work, we
prove that this phaenomenon holds whenever the covariance
function K is the Green’s function of an elliptic boundary value
problem.
prove that it leads to an algorithm with computational complexity

of O
(

N log2 (N)
(

log (1/ε) + log2 (N)
)4d+1

)
in time and

O
(
N log(N) logd (N 1

ε )
)

in space.
show that even though the Matérn family is not covered rigorously
by our theoretical results, we get good approximation results, in
particular in the interior of the domain.
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A numerical experiment

In this work, we
prove that this phaenomenon holds whenever the covariance
function K is the Green’s function of an elliptic boundary value
problem.
prove that it leads to an algorithm with computational complexity

of O
(

N log2 (N)
(

log (1/ε) + log2 (N)
)4d+1

)
in time and

O
(
N log(N) logd (N 1

ε )
)

in space.
show that even though the Matérn family is not covered rigorously
by our theoretical results, we get good approximation results, in
particular in the interior of the domain.
show that as a byproduct of our algorithm we obtain a sparse
approximate PCA with near optimal approximation property.
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Disintegration of Gaussian Measures and the
Screening Effect

Let X be a centered Gaussian vector with covariance Θ.
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Disintegration of Gaussian Measures and the
Screening Effect

Let X be a centered Gaussian vector with covariance Θ.
Assume we want to compute E [f (X )] for some function f .
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Disintegration of Gaussian Measures and the
Screening Effect

Let X be a centered Gaussian vector with covariance Θ.
Assume we want to compute E [f (X )] for some function f .
Use Monte Carlo, but for Θ large, each sample is expensive.
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Disintegration of Gaussian Measures and the
Screening Effect

Let X be a centered Gaussian vector with covariance Θ.
Assume we want to compute E [f (X )] for some function f .
Use Monte Carlo, but for Θ large, each sample is expensive.
Idea: use disintegration of measure:

E [f (X )] = E [E[f (X )|Y ] (Y )] .
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Disintegration of Gaussian Measures and the
Screening Effect

Let X be a centered Gaussian vector with covariance Θ.
Assume we want to compute E [f (X )] for some function f .
Use Monte Carlo, but for Θ large, each sample is expensive.
Idea: use disintegration of measure:

E [f (X )] = E [E[f (X )|Y ] (Y )] .

Choose Y , such that Y and E[f (X )|Y ] can be sampled cheaply.
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Disintegration of Gaussian Measures and the
Screening Effect

Consider X ∈ RN , {xi}1≤i≤N ⊂ [0,1] and Θi,j := exp
(
−|xi − xj |

)
.
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Disintegration of Gaussian Measures and the
Screening Effect

Consider X ∈ RN , {xi}1≤i≤N ⊂ [0,1] and Θi,j := exp
(
−|xi − xj |

)
.

Corresponds to a prior on the space H1 (0,1) of mean square
differentiable functions.
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Disintegration of Gaussian Measures and the
Screening Effect

Consider X ∈ RN , {xi}1≤i≤N ⊂ [0,1] and Θi,j := exp
(
−|xi − xj |

)
.

Corresponds to a prior on the space H1 (0,1) of mean square
differentiable functions.
Assume xi are ordered in increasing order and xbN/2c ≈ 1/2
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Disintegration of Gaussian Measures and the
Screening Effect

Consider X ∈ RN , {xi}1≤i≤N ⊂ [0,1] and Θi,j := exp
(
−|xi − xj |

)
.

Corresponds to a prior on the space H1 (0,1) of mean square
differentiable functions.
Assume xi are ordered in increasing order and xbN/2c ≈ 1/2
We then have, for i < bN/2c < j : Cov

[
Xi ,Xj |XbN/2c

]
≈ 0.

F. Schäfer, T.J. Sullivan, H. Owhadi Sparse factorisation of dense Kernel matrices June 8th 2017 48 / 130



Disintegration of Gaussian Measures and the
Screening Effect

Consider X ∈ RN , {xi}1≤i≤N ⊂ [0,1] and Θi,j := exp
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Disintegration of Gaussian Measures and the
Screening Effect

Consider X ∈ RN , {xi}1≤i≤N ⊂ [0,1] and Θi,j := exp
(
−|xi − xj |

)
.

Corresponds to a prior on the space H1 (0,1) of mean square
differentiable functions.
Assume xi are ordered in increasing order and xbN/2c ≈ 1/2
We then have, for i < bN/2c < j : Cov

[
Xi ,Xj |XbN/2c

]
≈ 0.
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Disintegration of Gaussian Measures and the
Screening Effect

For two observation sites xi , xj , the covariance conditional on the
obervation sites inbetween is small.
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Disintegration of Gaussian Measures and the
Screening Effect

For two observation sites xi , xj , the covariance conditional on the
obervation sites inbetween is small.
Known as screening effect in the spatial statistics community.
Analysed by Stein (2002). Used, among others, by Banerjee et al.
(2008) and Katzfuss (2015) for efficient approximation of
Gaussian processes.
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Disintegration of Gaussian Measures and the
Screening Effect

For two observation sites xi , xj , the covariance conditional on the
obervation sites inbetween is small.
Known as screening effect in the spatial statistics community.
Analysed by Stein (2002). Used, among others, by Banerjee et al.
(2008) and Katzfuss (2015) for efficient approximation of
Gaussian processes.
Let us take Y = XbN/2c. Then Y is cheap to sample, and the
covariance matrix of X |Y has only 2 (N/2)2 noneglegible entries.
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Disintegration of Gaussian Measures and the
Screening Effect

For two observation sites xi , xj , the covariance conditional on the
obervation sites inbetween is small.
Known as screening effect in the spatial statistics community.
Analysed by Stein (2002). Used, among others, by Banerjee et al.
(2008) and Katzfuss (2015) for efficient approximation of
Gaussian processes.
Let us take Y = XbN/2c. Then Y is cheap to sample, and the
covariance matrix of X |Y has only 2 (N/2)2 noneglegible entries.
When using Cholesky decomposition, this yields a factor 4
improvement of computational speed.
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

Look at a single step of Block Cholesky decomposition:
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

Look at a single step of Block Cholesky decomposition:
This corresponds to:(

Θ11 Θ12
Θ21 Θ22

)
=

(
Id 0

Θ21Θ−1
11 Id

)(
Θ11 0
0 Θ22 −Θ21Θ−1

11 Θ12

)(
Id Θ−1

11 Θ12
0 Id

)
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

Look at a single step of Block Cholesky decomposition:
This corresponds to:(

Θ11 Θ12
Θ21 Θ22

)
=

(
Id 0

Θ21Θ−1
11 Id

)(
Θ11 0
0 Θ22 −Θ21Θ−1

11 Θ12

)(
Id Θ−1

11 Θ12
0 Id

)

Note, that for
(

Θ21Θ−1
11

)
b = E [X2|X1 = b], and

Θ22 −Θ21Θ−1
11 Θ12 = Cov [X2|X1].
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

Look at a single step of Block Cholesky decomposition:
This corresponds to:(

Θ11 Θ12
Θ21 Θ22

)
=

(
Id 0

Θ21Θ−1
11 Id

)(
Θ11 0
0 Θ22 −Θ21Θ−1

11 Θ12

)(
Id Θ−1

11 Θ12
0 Id

)

Note, that for
(

Θ21Θ−1
11

)
b = E [X2|X1 = b], and

Θ22 −Θ21Θ−1
11 Θ12 = Cov [X2|X1].

(Block-)Cholesky decomposition is computationally equivalent to
the disintegration of Gaussian measures.
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

Look at a single step of Block Cholesky decomposition:
This corresponds to:(

Θ11 Θ12
Θ21 Θ22

)
=

(
Id 0

Θ21Θ−1
11 Id

)(
Θ11 0
0 Θ22 −Θ21Θ−1

11 Θ12

)(
Id Θ−1

11 Θ12
0 Id

)

Note, that for
(

Θ21Θ−1
11

)
b = E [X2|X1 = b], and

Θ22 −Θ21Θ−1
11 Θ12 = Cov [X2|X1].

(Block-)Cholesky decomposition is computationally equivalent to
the disintegration of Gaussian measures.
Follows immediately from well known formulas, but rarely used in
the literature. One Example: Bickson (2008).
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

This suggests to choose a bisective elimination ordering:
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

This suggests to choose a bisective elimination ordering:

Lets start compting the Cholesky decomposition
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

This suggests to choose a bisective elimination ordering:

Lets start compting the Cholesky decomposition
We observe a fade-out of entries!
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

What about higher dimensional examples?
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

How about higher dimensional examples?
In 2d, use quadsection:
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

We know that the result of the factorisation is sparse, but can we
compute it efficiently?
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

We know that the result of the factorisation is sparse, but can we
compute it efficiently?
Key observation: The entry (i , j) is used for the first time with the
min (i , j)-th pivot.
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

We know that the result of the factorisation is sparse, but can we
compute it efficiently?
Key observation: The entry (i , j) is used for the first time with the
min (i , j)-th pivot.
If we know they will be negligible untill we use them, we don’t have
to update them, nor know them in the first place.
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

We know that the result of the factorisation is sparse, but can we
compute it efficiently?
Key observation: The entry (i , j) is used for the first time with the
min (i , j)-th pivot.
If we know they will be negligible untill we use them, we don’t have
to update them, nor know them in the first place.
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

Bisective/Quadsective ordering is the reverse of nested dissection.
Indeed, for P the order-reversing permutation matrix, we have:

(Θ)−1 =
(

LLT
)−1

= L−T L−1

=⇒ P (Θ)−1 P = PL−T PPL−1P =
(

PL−T P
)(

PL−T P
)T

,

But we have L−1 = LT (Θ)−1.
For a sparse elimination ordering of Θ, the reverse ordering leads
to sparse factorisation of (Θ)−1
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

We obtain a very simple algorithm:
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

We obtain a very simple algorithm:
Given a positive definite matrix Θ and a Graph G, such that Θ−1 is
sparse according to G.
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

We obtain a very simple algorithm:
Given a positive definite matrix Θ and a Graph G, such that Θ−1 is
sparse according to G.
Obtain inverse nested dissection ordering for G.
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

We obtain a very simple algorithm:
Given a positive definite matrix Θ and a Graph G, such that Θ−1 is
sparse according to G.
Obtain inverse nested dissection ordering for G.
Set entries (i , j) that are separated after pivot number min (i , j) to
zero.
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

We obtain a very simple algorithm:
Given a positive definite matrix Θ and a Graph G, such that Θ−1 is
sparse according to G.
Obtain inverse nested dissection ordering for G.
Set entries (i , j) that are separated after pivot number min (i , j) to
zero.
Compute incomplete Cholesky factorisation.
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

Remaining problems with our approach:
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

Remaining problems with our approach:
Nested dissection does not lead to near-linear complexity
algorithms
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

Remaining problems with our approach:
Nested dissection does not lead to near-linear complexity
algorithms
Precision matrix will not be exactly sparse. How is it localised?
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Sparse Factorisation of Dense Matrices: fade-out
instead of fill-in

Remaining problems with our approach:
Nested dissection does not lead to near-linear complexity
algorithms
Precision matrix will not be exactly sparse. How is it localised?
The answer can be found in the recent literature on numerical
homogenisation:
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Sparse factorisation of dense matrices using gamblets

“Gamblet” bases have been introduced as part of the game
theoretical approach to numerical PDE (Owhadi (2017), Owhadi
and Scovel (2017) ).
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Sparse factorisation of dense matrices using gamblets

“Gamblet” bases have been introduced as part of the game
theoretical approach to numerical PDE (Owhadi (2017), Owhadi
and Scovel (2017) ).
Assume our covariance matrix is

Θi,j =

∫
[0,1]2

φ
(q)
i (x) G (x , y)φ

(q)
j (y) dx dy

For φ(q)
i := 1[(i−1)hq ,ihq ] and G the Green’s function of a second

order elliptic PDE.
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Sparse factorisation of dense matrices using gamblets

“Gamblet” bases have been introduced as part of the game
theoretical approach to numerical PDE (Owhadi (2017), Owhadi
and Scovel (2017) ).
Assume our covariance matrix is

Θi,j =

∫
[0,1]2

φ
(q)
i (x) G (x , y)φ

(q)
j (y) dx dy

For φ(q)
i := 1[(i−1)hq ,ihq ] and G the Green’s function of a second

order elliptic PDE.

Corresponds to Xi (ω) =
1∫
0
φ

(q)
i (x) u (x , ω) dx , with u (ω) solution

to elliptic SPDE with Gaussian forcing.
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Sparse factorisation of dense matrices using gamblets

Similiar to our case, only with 1[(i−1)hq ,ihq ] instead of dirac mesure.
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Sparse factorisation of dense matrices using gamblets

Similiar to our case, only with 1[(i−1)hq ,ihq ] instead of dirac mesure.

For φ(k)
i := 1[(i−1)hk ,ihk ], Owhadi and Scovel (2017) shows:
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Sparse factorisation of dense matrices using gamblets

Similiar to our case, only with 1[(i−1)hq ,ihq ] instead of dirac mesure.

For φ(k)
i := 1[(i−1)hk ,ihk ], Owhadi and Scovel (2017) shows:

ψ
(k)
i := E

[
u|
∫ 1

0 u (x)φ
(k)
j (x) dx = δi,j

]
is exponentially localised,

on a scale of hk :
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Sparse factorisation of dense matrices using gamblets

Similiar to our case, only with 1[(i−1)hq ,ihq ] instead of dirac mesure.

For φ(k)
i := 1[(i−1)hk ,ihk ], Owhadi and Scovel (2017) shows:

ψ
(k)
i := E

[
u|
∫ 1

0 u (x)φ
(k)
j (x) dx = δi,j

]
is exponentially localised,

on a scale of hk :
Main idea: Estimate on exponential decay of a conditional
expectation implies exponential decay of a Cholesky factors.
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Sparse factorisation of dense matrices using gamblets

Transform to multiresolution basis to obtain block matrix:(
Γk ,l
)

i,j =

∫
[0,1]2

φ
(k),χ
i (x) G (x , y)φ

(l),χ
j (y) dx dy

F. Schäfer, T.J. Sullivan, H. Owhadi Sparse factorisation of dense Kernel matrices June 8th 2017 86 / 130



Sparse factorisation of dense matrices using gamblets

Transform to multiresolution basis to obtain block matrix:(
Γk ,l
)

i,j =

∫
[0,1]2

φ
(k),χ
i (x) G (x , y)φ

(l),χ
j (y) dx dy

Where the
{
φ

(k),χ
j

}
j∈J(k)

are chosen as Haar basis functions.
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Sparse factorisation of dense matrices using gamblets

Then the results of Owhadi (2017) and Owhadi and Scovel (2017)
imply that:

F. Schäfer, T.J. Sullivan, H. Owhadi Sparse factorisation of dense Kernel matrices June 8th 2017 88 / 130



Sparse factorisation of dense matrices using gamblets

Then the results of Owhadi (2017) and Owhadi and Scovel (2017)
imply that:

χ
(k)
i := E

[
u|
∫ 1

0 u (x)φ
(l),χ
j (x) dx = δi,jδk ,l ,∀l ≤ k

]
is exponentially

localised, on a scale of hk :∣∣∣χ(k)
i

(
x − x (k)

i

)∣∣∣ ≤ C exp
(
− γ

hk

∥∥∥x − x (k)
i

∥∥∥) .
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Sparse factorisation of dense matrices using gamblets

Then the results of Owhadi (2017) and Owhadi and Scovel (2017)
imply that:

χ
(k)
i := E

[
u|
∫ 1

0 u (x)φ
(l),χ
j (x) dx = δi,jδk ,l ,∀l ≤ k

]
is exponentially

localised, on a scale of hk :∣∣∣χ(k)
i

(
x − x (k)

i

)∣∣∣ ≤ C exp
(
− γ

hk

∥∥∥x − x (k)
i

∥∥∥) .
Furthermore, the stiffness matrices decay exponentially on each
level:

B(k)
i,j :=

1∫
0

χ
(k)
i (x) G−1χ

(k)
j (x) dx ≤ exp

(
−γ
∥∥xi − xj

∥∥)
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Sparse factorisation of dense matrices using gamblets

Then the results of Owhadi (2017) and Owhadi and Scovel (2017)
imply that:

χ
(k)
i := E

[
u|
∫ 1

0 u (x)φ
(l),χ
j (x) dx = δi,jδk ,l ,∀l ≤ k

]
is exponentially

localised, on a scale of hk :∣∣∣χ(k)
i

(
x − x (k)

i

)∣∣∣ ≤ C exp
(
− γ

hk

∥∥∥x − x (k)
i

∥∥∥) .
Furthermore, the stiffness matrices decay exponentially on each
level:

B(k)
i,j :=

1∫
0

χ
(k)
i (x) G−1χ

(k)
j (x) dx ≤ exp

(
−γ
∥∥xi − xj

∥∥)
Finally, we have for a constant κ:

cond
(

B(k)
)
≤ κ, ∀k
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Sparse factorisation of dense matrices using gamblets

The above properties will allow us to show localisation of the
(block ) Cholesky factors:
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Sparse factorisation of dense matrices using gamblets

The above properties will allow us to show localisation of the
(block ) Cholesky factors:
Consider the two-scale case:(

Γ11 Γ12
Γ21 Γ22

)
=

(
Id 0

Γ21Γ−1
11 Id

)(
Θ11 0
0 Γ22 − Γ21Γ−1

11 Γ12

)(
Id Γ−1

11 Γ12
0 Id

)
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Sparse factorisation of dense matrices using gamblets

The above properties will allow us to show localisation of the
(block ) Cholesky factors:
Consider the two-scale case:(

Γ11 Γ12
Γ21 Γ22

)
=

(
Id 0

Γ21Γ−1
11 Id

)(
Γ11 0
0 Γ22 − Γ21Γ−1

11 Γ12

)(
Id Γ−1

11 Γ12
0 Id

)

(
Γ21Γ−1

11

)
i,j

= E
[∫

uφ(2),χ
i dx

∣∣∣∣ ∫ uφ(1),χ
m dx = δj,m

]
=

∫
φ

(2),χ
i χ

(1)
j dx

Γ22 − Γ21Γ−1
11 Γ12 = Cov

[∫
uφ(2),χ dx

∣∣∣∣ ∫ uφ(1),χ dx
]

=
(

B(2)
)−1
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Sparse factorisation of dense matrices using gamblets

(
Γ21Γ−1

11

)
i,j

=
∫
φ

(2),χ
i χ

(1)
j dx ≤ C exp

(
−γ

h

∥∥∥x (2)
i − x (1)

j

∥∥∥)
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Sparse factorisation of dense matrices using gamblets

(
Γ21Γ−1

11

)
i,j

=
∫
φ

(2),χ
i χ

(1)
j dx ≤ C exp

(
−γ

h

∥∥∥x (2)
i − x (1)

j

∥∥∥)
Fact: Inverses ( Demko (1984), Jaffard (1990) ) and Cholesky
factors (Benzi and Tůma (2000), Krishtal et al. (2015) ) of
well-conditioned and banded/exponentially localised matrices are
exponentially localised.
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Sparse factorisation of dense matrices using gamblets

(
Γ21Γ−1

11

)
i,j

=
∫
φ

(2),χ
i χ

(1)
j dx ≤ C exp

(
−γ

h

∥∥∥x (2)
i − x (1)

j

∥∥∥)
Fact: Inverses ( Demko (1984), Jaffard (1990) ) and Cholesky
factors (Benzi and Tůma (2000), Krishtal et al. (2015) ) of
well-conditioned and banded/exponentially localised matrices are
exponentially localised.

Therefore:
((

B(2)
)−1
)

i,j
≤ C exp

(
− γ

h2

∥∥∥x2
i − x (2)

j

∥∥∥).
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Sparse factorisation of dense matrices using gamblets

(
Γ21Γ−1

11

)
i,j

=
∫
φ

(2),χ
i χ

(1)
j dx ≤ C exp

(
−γ

h

∥∥∥x (2)
i − x (1)

j

∥∥∥)
Fact: Inverses ( Demko (1984), Jaffard (1990) ) and Cholesky
factors (Benzi and Tůma (2000), Krishtal et al. (2015) ) of
well-conditioned and banded/exponentially localised matrices are
exponentially localised.

Therefore:
((

B(2)
)−1
)

i,j
≤ C exp

(
− γ

h2

∥∥∥x2
i − x (2)

j

∥∥∥).

Argument can can be extended to multiple scales. Results in
exponentially decaying (block-)Cholesky factors.

F. Schäfer, T.J. Sullivan, H. Owhadi Sparse factorisation of dense Kernel matrices June 8th 2017 98 / 130



Sparse factorisation of dense matrices using gamblets

(
Γ21Γ−1

11

)
i,j

=
∫
φ

(2),χ
i χ

(1)
j dx ≤ C exp

(
−γ

h

∥∥∥x (2)
i − x (1)

j

∥∥∥)
Fact: Inverses ( Demko (1984), Jaffard (1990) ) and Cholesky
factors (Benzi and Tůma (2000), Krishtal et al. (2015) ) of
well-conditioned and banded/exponentially localised matrices are
exponentially localised.

Therefore:
((

B(2)
)−1
)

i,j
≤ C exp

(
− γ

h2

∥∥∥x2
i − x (2)

j

∥∥∥).

Argument can can be extended to multiple scales. Results in
exponentially decaying (block-)Cholesky factors.
These factors can be approximated in time complexity by
(block-)Cholesky decomposition in computational complexity of

O
(

N log2 (N)
(

log (1/ε) + log2 (N)
)4d+1

)
in time and

O
(
N log(N) logd (N 1

ε )
)

in space for an approximation error of ε.
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Sparse factorisation of dense matrices using gamblets

How about φ(q)
i = δ

x (q)
i

, i.e. pointwise sampling?
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Sparse factorisation of dense matrices using gamblets

How about φ(q)
i = δ

x (q)
i

, i.e. pointwise sampling?

In Owhadi and Scovel (2017), analogue results for pointwise
samples are obtained using averaging:
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Sparse factorisation of dense matrices using gamblets

We are left with a simple algorithm:
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Sparse factorisation of dense matrices using gamblets

We are left with a simple algorithm:
Let Γ be Θ expressed in multiresolution basis.
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Sparse factorisation of dense matrices using gamblets

We are left with a simple algorithm:
Let Γ be Θ expressed in multiresolution basis.
Throw away all entries outside of Sρ, defined as

Sρ :=
{

(i , j) ∈ I × I
∣∣∣i ∈ J(k), j ∈ J(l),dist

(
x (k)

i , x (l)
j

)
≤ ρ ∗ hmin(k ,l)

}
.
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Sparse factorisation of dense matrices using gamblets

We are left with a simple algorithm:
Let Γ be Θ expressed in multiresolution basis.
Throw away all entries outside of Sρ, defined as

Sρ :=
{

(i , j) ∈ I × I
∣∣∣i ∈ J(k), j ∈ J(l),dist

(
x (k)

i , x (l)
j

)
≤ ρ ∗ hmin(k ,l)

}
.

Compute incomplete (block-)Cholesky decomposition of Γ
restricted to Sρ.
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Sparse factorisation of dense matrices using gamblets

We are left with a simple algorithm:
Let Γ be Θ expressed in multiresolution basis.
Throw away all entries outside of Sρ, defined as

Sρ :=
{

(i , j) ∈ I × I
∣∣∣i ∈ J(k), j ∈ J(l),dist

(
x (k)

i , x (l)
j

)
≤ ρ ∗ hmin(k ,l)

}
.

Compute incomplete (block-)Cholesky decomposition of Γ
restricted to Sρ.
Factorisation can be done in O (N poly (ρ log (N))), error decays
exponentially with ρ.
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Sparse factorisation of dense matrices using gamblets

We are left with two closely related problems:
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Sparse factorisation of dense matrices using gamblets

We are left with two closely related problems:
The multiresolution basis, in order to satisfy the conditions of the
proof of bounded condition numbers given in Owhadi and Scovel
(2017) needs to satisfy the vanishing moment condition:∫

τ
(k)
i

pφ(k),χ
i dx = 0,∀p ∈ Ps−1

(
τ

(k)
i

)
,

for a τ (k)
i of diameter ≈ hk and 2s the order of the elliptic operator.
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Sparse factorisation of dense matrices using gamblets

We are left with two closely related problems:
The multiresolution basis, in order to satisfy the conditions of the
proof of bounded condition numbers given in Owhadi and Scovel
(2017) needs to satisfy the vanishing moment condition:∫

τ
(k)
i

pφ(k),χ
i dx = 0,∀p ∈ Ps−1

(
τ

(k)
i

)
,

for a τ (k)
i of diameter ≈ hk and 2s the order of the elliptic operator.

Therefore, the multiresolution basis depends on the operator.
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Sparse factorisation of dense matrices using gamblets

We are left with two closely related problems:
The multiresolution basis, in order to satisfy the conditions of the
proof of bounded condition numbers given in Owhadi and Scovel
(2017) needs to satisfy the vanishing moment condition:∫

τ
(k)
i

pφ(k),χ
i dx = 0,∀p ∈ Ps−1

(
τ

(k)
i

)
,

for a τ (k)
i of diameter ≈ hk and 2s the order of the elliptic operator.

Therefore, the multiresolution basis depends on the operator.
Also, averaging over large regions required for coarse basis
functions. Leads to O

(
N2) complexity of basis transform.
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Sparse factorisation of dense matrices using gamblets

Can we get rid of vanishing moment condition?
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Sparse factorisation of dense matrices using gamblets

Can we get rid of vanishing moment condition?
Conditions in Owhadi and Scovel (2017) are (roughly speaking):

1
C

Hk ≤ λmin (Θ|Φ(k))

λmax (Θ|⊥Φ(k−1)) ≤ CHk−1.
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Sparse factorisation of dense matrices using gamblets

Can we get rid of vanishing moment condition?
Conditions in Owhadi and Scovel (2017) are (roughly speaking):

1
C

Hk ≤ λmin (Θ|Φ(k))

λmax (Θ|⊥Φ(k−1)) ≤ CHk−1.

Moving to finer scales, the discrete space contains more and more
oscillatory functions (small eigenvalues).
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Sparse factorisation of dense matrices using gamblets

Can we get rid of vanishing moment condition?
Conditions in Owhadi and Scovel (2017) are (roughly speaking):

1
C

Hk ≤ λmin (Θ|Φ(k))

λmax (Θ|⊥Φ(k−1)) ≤ CHk−1.

Moving to finer scales, the discrete space contains more and more
oscillatory functions (small eigenvalues).
But its in the orthogonal complement, of a larger space, low
modes are “projected out”.
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Sparse factorisation of dense matrices using gamblets

Can we get rid of vanishing moment condition?
Conditions in Owhadi and Scovel (2017) are (roughly speaking):

1
C

Hk ≤ λmin (Θ|Φ(k))

λmax (Θ|⊥Φ(k−1)) ≤ CHk−1.

Moving to finer scales, the discrete space contains more and more
oscillatory functions (small eigenvalues).
But its in the orthogonal complement, of a larger space, low
modes are “projected out”.
Balance of these effects leads to bounded condition numbers.
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Sparse factorisation of dense matrices using gamblets

Gamblets are more robust!
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Sparse factorisation of dense matrices using gamblets

Gamblets are more robust!
Can replace the conditions with (roughly speaking):

1
C

Hk ≤ λmin (Θ|Φ(k))

max
φ∈Φk ,‖φ‖=1

min
ϕ∈Φk−1:‖ϕ‖≤C

(φ− ϕ)T Θ (φ− ϕ) ≤ CHk−1.
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Sparse factorisation of dense matrices using gamblets

Gamblets are more robust!
Can replace the conditions with (roughly speaking):

1
C

Hk ≤ λmin (Θ|Φ(k))

max
φ∈Φk ,‖φ‖=1

min
ϕ∈Φk−1:‖ϕ‖≤C

(φ− ϕ)T Θ (φ− ϕ) ≤ CHk−1.

The gamblets find the optimal orthogonalisation themselves!
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Sparse factorisation of dense matrices using gamblets

We can use subsampling as an aggregation scheme!
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Sparse factorisation of dense matrices using gamblets

Our algorithm now consists of three steps:
1 Reorder the variables hierarchically
2 Obtain the entries in S2 ( or more generally Sρ ), set other entries to

zero.
3 Compute the incomplete Cholesky decomposition
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Sparse factorisation of dense matrices using gamblets

Our algorithm now consists of three steps:
1 Reorder the variables hierarchically
2 Obtain the entries in S2 ( or more generally Sρ ), set other entries to

zero.
3 Compute the incomplete Cholesky decomposition

At this point, for theoretical guarantuees we need to replace step
three with an incomplete Block factorisation. All numerical
evidence indicates that this is not necessary.
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Two additional results

As observed in Owhadi 2017, Hou and Zhang 2017, gamblets
provide a near-optimal sparse PCA. We obtain a PCA with the
same approximation property, by keeping only the first k columns
of L.
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Two additional results

As observed in Owhadi 2017, Hou and Zhang 2017, gamblets
provide a near-optimal sparse PCA. We obtain a PCA with the
same approximation property, by keeping only the first k columns
of L.
By reversing the elimination ordering, we obtain a near linear
complexity Cholesky factorisation of the sparse/exponentially
decaying inverse of Θ.
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Problems at the boundary

Figure: ν = 1, l = 0.4
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Problems at the boundary
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Decay of approximation error
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Sparse approximate PCA

Figure: Near optimal sparse PCA: First panel: ν = 1, l = 0.2, δx = 0.2 and
ρ = 6. Second panel: ν = 2, l = 0.2 and δx = 0.2 and ρ = 8.
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Perturbation of the Mesh

δx ‖Γρ − Γ‖ ‖Γρ − Γ‖/‖Γ‖ ‖Γρ − Γ‖Fro ‖Γρ − Γ‖Fro/‖Γ‖Fro #S #S/N2

0.2 4.336e-03 1.560e-06 1.669e-02 1.026e-06 2.125e+07 7.675e-02
0.4 4.495e-03 1.617e-06 1.706e-02 1.063e-06 2.128e+07 7.683e-02
2.0 4.551e-03 1.638e-06 1.820e-02 1.077e-06 2.127e+07 7.682e-02
4.0 8.158e-03 2.940e-06 2.976e-02 1.933e-06 2.119e+07 7.652e-02

Table: Compression and accuracy for q = 7, l = 0.2, ρ = 5, ν = 1 and
different values of δx .
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Data on low dimensional manifold

δz ‖Γρ − Γ‖ ‖Γρ − Γ‖/‖Γ‖ ‖Γρ − Γ‖Fro ‖Γρ − Γ‖Fro/‖Γ‖Fro #S #S/N2

0.0 5.049e-03 1.560e-06 1.885e-02 1.026e-06 2.126e+07 7.677e-02
0.1 6.341e-02 1.648e-06 1.232e-01 1.077e-06 2.083e+07 7.521e-02
0.2 1.204e-01 1.749e-06 2.203e-01 1.126e-06 1.976e+07 7.137e-02
0.4 1.954e-01 3.550e-06 5.098e-01 2.197e-06 1.722e+07 6.218e-02

Table: Compression and accuracy for q = 7, l = 0.2, ρ = 5, ν = 1, δx = 2
and different values of δz .

F. Schäfer, T.J. Sullivan, H. Owhadi Sparse factorisation of dense Kernel matrices June 8th 2017 129 / 130



Fractional Operators

ν ‖Γρ − Γ‖ ‖Γρ − Γ‖/‖Γ‖ ‖Γρ − Γ‖Fro ‖Γρ − Γ‖Fro/‖Γ‖Fro #S #S/N2

1.0 1.266e-03 4.556e-07 4.987e-03 2.995e-07 2.776e+07 1.003e-01
1.1 1.813e-03 6.423e-07 6.216e-03 4.190e-07 2.776e+07 1.003e-01
1.3 3.235e-03 1.129e-06 1.039e-02 7.312e-07 2.776e+07 1.003e-01
1.5 5.245e-03 1.811e-06 1.652e-02 1.166e-06 2.776e+07 1.003e-01
1.6 6.800e-03 2.333e-06 2.148e-02 1.498e-06 2.776e+07 1.003e-01
1.8 9.891e-03 3.362e-06 3.088e-02 2.147e-06 2.776e+07 1.003e-01
2.0 1.238e-02 4.180e-06 3.892e-02 2.662e-06 2.776e+07 1.003e-01

Table: Compression and accuracy for q = 7, l = 0.2, ρ = 6, δx = 0.2 and
different values of ν.
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